

Role of the chemical valorisation of CO_2 toward the transition to climate neutrality and circular economy

Workshop

22 October 2020

Sophie Wilmet

The chemical industry and the transition toward

a circular and climate neutral economy

Toward a climate neutral economy

Enabling role of the chemical industry in the transition toward a climate-neutral economy

Total GHG emissions^{*} in the EU-28 chemical industry fall nearly 60% since 1990

EU chemicals GHG* emissions

Source: European Environment Agency (EEA) * Energy (Fuel and Power CO₂) included <u>Cefic Facts & Figures 2020</u>

Source: European Environment Agency (EEA) * Energy (Fuel and Power CO₂) included Cefic Facts & Figures 2020

Circularity of Carbon

Not used

A mix & combination of technological solutions needed in the chemical sector

Alternative Feedstock

+ Enabling digital technologies

Chemical valorisation of CO₂: applications

Chemical valorisation of CO₂ - Applications

Technology Fields

Products from CO₂

Market size

High

Source: DECHEMA 2019

Low carbon energy and feedstock for the European chemical industry - Dechema study (2017)

Scong

DECHEMA Buchels to ware have artification are a	Impact of alternative production routes for the production of:	
TECHNOLOGY STUDY Low carbon energy and feedstock for the European chemical industry	Methanol	Ethylene
	Propylene	BTX
	Ammonia (urea)	Chlorine
	accounting for ¾ of the chemical	

sector's GHG emissions

Objectives: evaluate in various deployment scenario the impact of the technologies considered on:

- GHG emissions reduction
- Investment requirements
- Demand for climate neutral electricity
- Demand for alternative feedstock

Technical options*

- Alternative carbon feedstock
 - CO₂ (CO)
 - Biomass
- Low carbon energy supply
- Power-to-heat
- Energy efficiency

*Technologies considered were at TRL>6 in 2017

<u>Not included in the quantitative evaluation</u>: Impact of industrial symbiosis and chemical recycling of waste Impact of chemical products on GHG savings in other sectors

Dechema study₍₂₀₁₇₎ – Impact for various scenarios

Source: Low carbon energy and feedstock for the European chemical industry, DECHEMA, 2017

C ROEM

CO₂ emissions reduction potential - Chemicals

R&I priorities for CO₂ valorisation technologies and EU funding landscape

CO₂ derived chemicals

Major R&I priorities

- More efficient capture and purification technologies, including purification adapted to CO₂ valorisation route
- Robust catalysts for CO₂ to C1 molecules and CO₂ to Cn+1 molecules
- Efficient electrocatalytic processes
- Advanced photo(electro)catalytic systems for the direct utilisation of sunlight
- Advanced catalytic system for direct CO₂ to polymers (existing polymers and new polymeric structures for high performance materials polymers from CO2 with new properties.

EU funding landscape

Innovation Fund - methodologies

Life Programme - work Programme 2021-2024 consultation

Horizon 2020 Green Deal Call - 2020

Cefic Cefic

Definition of R&I priorities

Sustainable Process Industry through Resource and Energy Efficiency

> Processes4Planet PPP

Multistakeholders ETP **Cefic Members**

Members of A.SPIRE

Advanced Processes for energy transition & circular economy

Source: SUSCHEM - Strategic Innovation and Research Agenda, 2019

4 technological drivers

Electrification Energy mix and H₂ Capture and Use of CO/CO₂ Resources flexibility

2 transversal topics

Digitalisation Industrial symbiosis

-RI RED- AND

Critical evaluation on the environmental impact

Impact of chemical valorisation of CO₂

Broad range of applications Broad range of technologies – Various energy needs /sources

Common understanding of how to evaluate the impact is essential

Regulatory framework

Financial support for technology development and deployment

Evaluation of the impact of CO₂ valorisation

Various studies on CO₂ valorisation

No common understanding of

how to evaluate the impact

(1) CO2-based production of chemical product B

(2) Conventional production of chemical product B

Major non-technical challenges to be addressed

Enabling development and deployment in Europe

Source: High Level Group on Key Enabling Technologies Final report « KETs: Time to Act » - 24 June 2015 <u>http://ec.europa.eu/growth/industry/key-enabling-technologies/european-strategy/high-level-group/index en.htm</u>

Major challenges

- Time for one (or two) investment cycle(s) in the chemical industry by 2050
- Technology development and demonstration needed by 2030
- Global competitiveness of the European chemical industry (huge investments required for the transition and higher cost of climate neutral products)
- High demand for climate neutral electricity

An appropriate policy framework required:

- Risk-sharing measures
- Infrastructures
- Regulation
- + Skills

What is needed to succeed

- A clear terminology
- Dedicated guidelines enabling a common understanding of how to evaluate the environmental impacts of CO₂ valorisation technologies. Such guidelines:
- An appropriate policy framework ensuring that existing and future policies adequately recognise
 CO₂ valorisation technologies taking into account the abovementioned guidelines.
- The recognition in the Emissions Trading System (ETS) Monitoring and reporting regulation (MRR) (and any future regulation in this area) based on carbon accounting principle of CO₂ emission avoidance resulting from the utilisation of CO₂ as alternative carbon feedstock.
- **Risk-sharing measures through appropriate financial instruments** such as the Innovation Fund and Important Projects of Common European Interest (IPCEI). Appropriate funding for technology development along the value chains at all Technology Readiness Levels (TRLs) in Europe at EU and national level will be key, in particular Horizon Europe.

Not to be shown - Just as notes of the previous slide

To define business opportunities for the European industry in the context of global competition, it is essential for Europe to develop:

- Dedicated guidelines enabling a common understanding of how to evaluate the environmental impacts of CO₂ valorisation technologies. Such guidelines:
 - are essential to the design of an appropriate policy framework and the evaluation of project proposals, and
 - would avoid the utilisation of non-relevant indicators such as carbon retention time of carbon in CO₂derived chemicals (see annex);
- A clear terminology to avoid confusion created for instance by acronyms such as CCU and CCUS (see annex);
- An appropriate policy framework ensuring that existing and future policies adequately recognise CO₂ valorisation technologies taking into account the abovementioned guidelines.
- The recognition in the Emissions Trading System (ETS) Monitoring and reporting regulation (MRR) (and any future regulation in this area) based on carbon accounting principle of CO₂ emission avoidance resulting from the utilisation of CO₂ as alternative carbon feedstock.
- **Risk-sharing measures through appropriate financial instruments** such as the Innovation Fund and Important Projects of Common European Interest (IPCEI). Appropriate funding for technology development along the value chains at all Technology Readiness Levels (TRLs) in Europe at EU and national level will be key, in particular Horizon Europe.

Thank you

.....

Sophie Wilmet Innovation Manager swi@cefic.be

cefic